Multiresolution Transforms Based Robust Image Enhancement
نویسندگان
چکیده
An Image Resolution Enhancement Technique based on Interpolation of the high frequency sub-band of colour images obtained by Discrete Wavelet Transform and the input colour image is proposed in this paper. Interpolation determines the intermediate values on the basis of observed values. One of the commonly used interpolation technique is Bicubic Interpolation. The edges are enhanced by introducing an intermediate stage by using Stationary Wavelet Transform. It is designed to overcome the lack of Translation-Invariance of Discrete Wavelet Transform. This is widely used in Signal Denoising and Pattern Recognition. Discrete Wavelet Transform is applied in order to decompose an input colour image into different sub-bands. Then the high frequency sub-bands as well as the input colour image are interpolated separately. The interpolated high frequency sub-bands and the Stationary Wavelet Transform high frequency sub-bands have the same size which means they can be added with each other. The new corrected high frequency sub-bands can be interpolated further for higher enlargement. Then all these sub-bands are combined with interpolated input image for new high resolution image by using Inverse Discrete Wavelet Transform. This has been done by MATLAB. The Peak Signal-Noise Ratio was obtained up to 5dB greater than the conventional and state-of-art image resolution enhancement techniques.
منابع مشابه
Region Completion in a Texture using Multiresolution Transforms
Abstract Natural images, textures and photographs are likely to be impaired by stains. As a result a substantial portion of the image remains blurred. However, a method called region completion is adopted to fill in the tainted part by using the information from the portion left unblemished by stains. A novel method to perform this operation is proposed in this paper. The three significant sta...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملLearning-based multiresolution transforms with application to image compression
In Harten’s framework, multiresolution transforms are defined by predicting finer resolution levels of information from coarser ones using an operator, called prediction operator, and defining details (or wavelet coefficients) that are the difference between the exact and predicted values. In this paper we use tools of statistical learning in order to design a more accurate prediction operator ...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کامل